Max Flows 3: Preflow-Push

Wednesday, 6 October 2021 2:00 PM

MAX FLOWS: THE PREFLOW-PUSH /PUSH-RELABEL
ALGORITHM
E-K & F-F P-P
- maintains a flow in excasion - maintains a proflex fat
- Stops when no s-t path in earry iteration
which all graph - maintains no s-t path,
Stopping withown: f is a flow.
Give:
$$G=(V,E), Ce, S, t \in V$$

Priflow: $f: E \rightarrow Re$ (actually s-t)
() the flee) $\leq Ce$
(i) excess $f(v) = \sum_{e into v} f(e)$
 $e out afv$
 $dv \neq S, excess f(v) \geq D$
 $S = \frac{8}{8} = 0 \xrightarrow{10} t$ This is a proflow.
Thus for any preflow f, excess $f(e) \leq 0$

Observations: I labels are nonotion non-decreasing
(i)
$$f$$
 is always a preflow
(ii) \tilde{Z} excess $f(v) = 0$, $k \neq v \neq s$, excess $f(v) \ge 0$
 $\Rightarrow lx cess f(s) \le 0 \Rightarrow l(s)$ is unchaged.

 $(2) \qquad (0) \qquad (0)$

Ex ample:

S
$$6$$
 V 4
(3) 6 V 4
(3) 6 V 4
S 6 V 4 t Saturaly puth sine S^{2} Cf(e)
excess: $+b$
(3) 6 V 4 t O non Saturaly push
S 6 V 4 t non Saturaly push
(3) 2 (4) 4 (5)
S 6 V 4 t t
excess: $+2$ (1) (5)
S 6 V 4 t t
excess: 0

Say that
$$f^{i}$$
 is the preflow after T^{μ} iteration of the while loop.
 $f^{o}_{e} = \begin{cases} Ce \quad is \quad e = (s, v) \\ O \quad o, w, \end{cases}$

Corollary 2: Ho, Hi, L(N)
$$\leq 2n$$

Proof: Suppose $\exists \vartheta$, ist. $(liv) = 2n$ f excession $(iv) \geq 0$.
Then by Claim 1, Gin has a ϑ -s path of leght $\leq n-1$
But by Claim 2, on every edge of this path, label decreases
by at most 1. Hence $l(s) \geq ne1$ which is a
Contradiction \blacksquare

Now we need to bound # push opns.
2 diff kinds of push opns:
$$S = lexcess_{f}(v)$$

along (v, u) edge $non - so twating push$
 $S = cf(v, u)$

Saturating push

Conside saturating puch along (V.4) colle.
This is simile to bet, where whenever an edge (V.4) reappears,
dist (V) intradue by 2
Now for P-P, similarly, O edge (V.4) as appears,
$$\frac{1}{2}$$
 (P
whenever edge (V.4) reappears, $\frac{1}{2}$ (V) intradue by 2.
(prove your set)
For any edge (V.4), # caturating pushes $\leq n$ (cone
 $\frac{1}{2}$ (V) $\leq 2n$).
Hence H soltwaling pushes $\leq 2mn$
Lastly to obtain bound on # non-saturating pushes.
Consider a N-S push along (V.4). The draws for gets
lower & kowe.
Consider a N-S push along (V.4). The draws for gets
 $\frac{1}{2}$ (V) $\frac{1}{2}$ built of writes that have draws for gets
 $\frac{1}{2}$ (V) $\frac{1}{2}$ built of $\frac{1}{2}$ (V) $\frac{1}{2}$ built $\frac{1}{2}$ (0) $\frac{1}{2}$ (V)
 $\frac{1}{2}$ $\frac{1}{2}$ (V) $\frac{1}{2}$ built $\frac{1}{2}$ (0) $\frac{1}{2}$ (0) $\frac{1}{2}$
If opn. is a non-saturating push.
 $\frac{1}{2}$ for $\frac{1}{2}$ \frac

With appropriate data structure, can run in $O(mn^2)$ fine. With Careful choice of excess otre in white loop, can own in $O(n^2 n \text{Tm})$ time.